Problem: not(true()) -> false() not(false()) -> true() odd(0()) -> false() odd(s(x)) -> not(odd(x)) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(s(x),y) -> s(+(x,y)) Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {7,6,5} transitions: s1(10) -> 10,7 +1(3,1) -> 10* +1(3,3) -> 10* +1(4,2) -> 10* +1(4,4) -> 10* +1(1,2) -> 10* +1(1,4) -> 10* +1(2,1) -> 10* +1(2,3) -> 10* +1(3,2) -> 10* +1(3,4) -> 10* +1(4,1) -> 10* +1(4,3) -> 10* +1(1,1) -> 10* +1(1,3) -> 10* +1(2,2) -> 10* +1(2,4) -> 10* not1(8) -> 8,6 odd1(2) -> 8* odd1(4) -> 8* odd1(1) -> 8* odd1(3) -> 8* false1() -> 8,6,5 true1() -> 5* true2() -> 6,8 false2() -> 6,8 not0(2) -> 5* not0(4) -> 5* not0(1) -> 5* not0(3) -> 5* true0() -> 1* false0() -> 2* odd0(2) -> 6* odd0(4) -> 6* odd0(1) -> 6* odd0(3) -> 6* 00() -> 3* s0(2) -> 4* s0(4) -> 4* s0(1) -> 4* s0(3) -> 4* +0(3,1) -> 7* +0(3,3) -> 7* +0(4,2) -> 7* +0(4,4) -> 7* +0(1,2) -> 7* +0(1,4) -> 7* +0(2,1) -> 7* +0(2,3) -> 7* +0(3,2) -> 7* +0(3,4) -> 7* +0(4,1) -> 7* +0(4,3) -> 7* +0(1,1) -> 7* +0(1,3) -> 7* +0(2,2) -> 7* +0(2,4) -> 7* 1 -> 10,7 2 -> 10,7 3 -> 10,7 4 -> 10,7 problem: Qed