Problem:
not(true()) -> false()
not(false()) -> true()
odd(0()) -> false()
odd(s(x)) -> not(odd(x))
+(x,0()) -> x
+(x,s(y)) -> s(+(x,y))
+(s(x),y) -> s(+(x,y))
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {7,6,5}
transitions:
s1(10) -> 10,7
+1(3,1) -> 10*
+1(3,3) -> 10*
+1(4,2) -> 10*
+1(4,4) -> 10*
+1(1,2) -> 10*
+1(1,4) -> 10*
+1(2,1) -> 10*
+1(2,3) -> 10*
+1(3,2) -> 10*
+1(3,4) -> 10*
+1(4,1) -> 10*
+1(4,3) -> 10*
+1(1,1) -> 10*
+1(1,3) -> 10*
+1(2,2) -> 10*
+1(2,4) -> 10*
not1(8) -> 8,6
odd1(2) -> 8*
odd1(4) -> 8*
odd1(1) -> 8*
odd1(3) -> 8*
false1() -> 8,6,5
true1() -> 5*
true2() -> 6,8
false2() -> 6,8
not0(2) -> 5*
not0(4) -> 5*
not0(1) -> 5*
not0(3) -> 5*
true0() -> 1*
false0() -> 2*
odd0(2) -> 6*
odd0(4) -> 6*
odd0(1) -> 6*
odd0(3) -> 6*
00() -> 3*
s0(2) -> 4*
s0(4) -> 4*
s0(1) -> 4*
s0(3) -> 4*
+0(3,1) -> 7*
+0(3,3) -> 7*
+0(4,2) -> 7*
+0(4,4) -> 7*
+0(1,2) -> 7*
+0(1,4) -> 7*
+0(2,1) -> 7*
+0(2,3) -> 7*
+0(3,2) -> 7*
+0(3,4) -> 7*
+0(4,1) -> 7*
+0(4,3) -> 7*
+0(1,1) -> 7*
+0(1,3) -> 7*
+0(2,2) -> 7*
+0(2,4) -> 7*
1 -> 10,7
2 -> 10,7
3 -> 10,7
4 -> 10,7
problem:
Qed